- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 25 (2019), pp. 1127-1143.
Published online: 2018-12
Cited by
- BibTex
- RIS
- TXT
In this paper, we mainly propose two kinds of high-accuracy schemes for the coupled nonlinear Schrödinger (CNLS) equations, based on the Fourier pseudospectral method (FPM), the high-order compact method (HOCM) and the Hamiltonian boundary value methods (HBVMs). With periodic boundary conditions, the proposed schemes admit the global energy conservation law and converge with even-order accuracy in time. Numerical results are presented to demonstrate the accuracy, energy-preserving and long-time numerical behaviors. Compared with symplectic Runge-Kutta methods (SRKMs), the proposed schemes are assuredly more effective to preserve energy, which is consistent with our theoretical analysis.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2017-0212}, url = {http://global-sci.org/intro/article_detail/cicp/12893.html} }In this paper, we mainly propose two kinds of high-accuracy schemes for the coupled nonlinear Schrödinger (CNLS) equations, based on the Fourier pseudospectral method (FPM), the high-order compact method (HOCM) and the Hamiltonian boundary value methods (HBVMs). With periodic boundary conditions, the proposed schemes admit the global energy conservation law and converge with even-order accuracy in time. Numerical results are presented to demonstrate the accuracy, energy-preserving and long-time numerical behaviors. Compared with symplectic Runge-Kutta methods (SRKMs), the proposed schemes are assuredly more effective to preserve energy, which is consistent with our theoretical analysis.