J. Nonl. Mod. Anal., 2 (2020), pp. 227-240.
Published online: 2021-04
[An open-access article; the PDF is free to any online user.]
Cited by
- BibTex
- RIS
- TXT
In this paper, the homoclinic bifurcation of a predator-prey system with impulsive state feedback control is investigated. By using the geometry theory of semi-continuous dynamic systems, the existences of order-1 homoclinic cycle and order-1 periodic solution are obtained. Then the stability of order-1 periodic solution is studied. At last, an example is presented to illustrate the main results.
}, issn = {2562-2862}, doi = {https://doi.org/10.12150/jnma.2020.227}, url = {http://global-sci.org/intro/article_detail/jnma/18808.html} }In this paper, the homoclinic bifurcation of a predator-prey system with impulsive state feedback control is investigated. By using the geometry theory of semi-continuous dynamic systems, the existences of order-1 homoclinic cycle and order-1 periodic solution are obtained. Then the stability of order-1 periodic solution is studied. At last, an example is presented to illustrate the main results.