Heintze-Karcher Inequality for Anisotropic Free Boundary Hypersurfaces in Convex Domains
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JMS-57-243,
author = {Jia , XiaohanWang , GuofangXia , Chao and Zhang , Xuwen},
title = {Heintze-Karcher Inequality for Anisotropic Free Boundary Hypersurfaces in Convex Domains},
journal = {Journal of Mathematical Study},
year = {2024},
volume = {57},
number = {3},
pages = {243--258},
abstract = {
In this paper, we prove an optimal Heintze-Karcher-type inequality for anisotropic free boundary hypersurfaces in general convex domains. The equality is achieved for anisotropic free boundary Wulff shapes in a convex cone. As applications, we prove Alexandrov-type theorems in convex cones.
}, issn = {2617-8702}, doi = {https://doi.org/10.4208/jms.v57n3.24.01}, url = {http://global-sci.org/intro/article_detail/jms/23488.html} }
TY - JOUR
T1 - Heintze-Karcher Inequality for Anisotropic Free Boundary Hypersurfaces in Convex Domains
AU - Jia , Xiaohan
AU - Wang , Guofang
AU - Xia , Chao
AU - Zhang , Xuwen
JO - Journal of Mathematical Study
VL - 3
SP - 243
EP - 258
PY - 2024
DA - 2024/10
SN - 57
DO - http://doi.org/10.4208/jms.v57n3.24.01
UR - https://global-sci.org/intro/article_detail/jms/23488.html
KW - Heintze-Karcher’s inequality, constant mean curvature, free boundary surface, capillary surface, convex cone.
AB -
In this paper, we prove an optimal Heintze-Karcher-type inequality for anisotropic free boundary hypersurfaces in general convex domains. The equality is achieved for anisotropic free boundary Wulff shapes in a convex cone. As applications, we prove Alexandrov-type theorems in convex cones.
Jia , XiaohanWang , GuofangXia , Chao and Zhang , Xuwen. (2024). Heintze-Karcher Inequality for Anisotropic Free Boundary Hypersurfaces in Convex Domains.
Journal of Mathematical Study. 57 (3).
243-258.
doi:10.4208/jms.v57n3.24.01
Copy to clipboard