Volume 56, Issue 3
Regularity for $p$-Harmonic Functions in the Grušin Plane

Chengwei Yu

J. Math. Study, 56 (2023), pp. 219-278.

Published online: 2023-07

Export citation
  • Abstract
Let $X=\{X_1,X_2\}$ be the orthogonal complement of a Cartan subalgebra in the Grušin plane, whose orthonormal basis is formed by the vector fields $X_1$ and $X_2$. When $1<p<\infty$, we prove that weak solutions $u$ to the degenerate subelliptic $p$-Laplacian equation $$\triangle_{X,p}u(z)=\sum\limits_{i=1}^2X_i(|Xu|^{p-2}X_iu)=0$$
have the $C^{0,1}_{loc}$, $C^{1,\alpha}_{loc}$ and $W^{2,2}_{X,loc}$-regularities.
  • AMS Subject Headings

35H20, 35B65

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{JMS-56-219, author = {Yu , Chengwei}, title = {Regularity for $p$-Harmonic Functions in the Grušin Plane}, journal = {Journal of Mathematical Study}, year = {2023}, volume = {56}, number = {3}, pages = {219--278}, abstract = {
Let $X=\{X_1,X_2\}$ be the orthogonal complement of a Cartan subalgebra in the Grušin plane, whose orthonormal basis is formed by the vector fields $X_1$ and $X_2$. When $1<p<\infty$, we prove that weak solutions $u$ to the degenerate subelliptic $p$-Laplacian equation $$\triangle_{X,p}u(z)=\sum\limits_{i=1}^2X_i(|Xu|^{p-2}X_iu)=0$$
have the $C^{0,1}_{loc}$, $C^{1,\alpha}_{loc}$ and $W^{2,2}_{X,loc}$-regularities.
}, issn = {2617-8702}, doi = {https://doi.org/10.4208/jms.v56n3.23.01}, url = {http://global-sci.org/intro/article_detail/jms/21872.html} }
TY - JOUR T1 - Regularity for $p$-Harmonic Functions in the Grušin Plane AU - Yu , Chengwei JO - Journal of Mathematical Study VL - 3 SP - 219 EP - 278 PY - 2023 DA - 2023/07 SN - 56 DO - http://doi.org/10.4208/jms.v56n3.23.01 UR - https://global-sci.org/intro/article_detail/jms/21872.html KW - $p$-Laplacian equation, regularities, Grušin plane. AB -
Let $X=\{X_1,X_2\}$ be the orthogonal complement of a Cartan subalgebra in the Grušin plane, whose orthonormal basis is formed by the vector fields $X_1$ and $X_2$. When $1<p<\infty$, we prove that weak solutions $u$ to the degenerate subelliptic $p$-Laplacian equation $$\triangle_{X,p}u(z)=\sum\limits_{i=1}^2X_i(|Xu|^{p-2}X_iu)=0$$
have the $C^{0,1}_{loc}$, $C^{1,\alpha}_{loc}$ and $W^{2,2}_{X,loc}$-regularities.
Yu , Chengwei. (2023). Regularity for $p$-Harmonic Functions in the Grušin Plane. Journal of Mathematical Study. 56 (3). 219-278. doi:10.4208/jms.v56n3.23.01
Copy to clipboard
The citation has been copied to your clipboard