Cited by
- BibTex
- RIS
- TXT
Our aim in this paper is to study a fully discrete scheme for modified higher-order (in space) anisotropic generalized Cahn-Hilliard models which have extensive applications in biology, image processing, etc. In particular, the scheme is a combination of finite element or spectral method in space and a second-order stable scheme in time. We obtain energy stability results, as well as the existence and uniqueness of the numerical solution, both for the space semi-discrete and fully discrete cases. We also give several numerical simulations which illustrate the theoretical results and, especially, the effects of the higher-order terms on the anisotropy.
}, issn = {2617-8702}, doi = {https://doi.org/10.4208/jms.v51n3.18.02}, url = {http://global-sci.org/intro/article_detail/jms/12657.html} }Our aim in this paper is to study a fully discrete scheme for modified higher-order (in space) anisotropic generalized Cahn-Hilliard models which have extensive applications in biology, image processing, etc. In particular, the scheme is a combination of finite element or spectral method in space and a second-order stable scheme in time. We obtain energy stability results, as well as the existence and uniqueness of the numerical solution, both for the space semi-discrete and fully discrete cases. We also give several numerical simulations which illustrate the theoretical results and, especially, the effects of the higher-order terms on the anisotropy.