- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
A new technique of residual-type a posteriori error analysis is developed for the lowest-order Raviart-Thomas mixed finite element discretizations of convection-diffusion-reaction equations in two- or three-dimension. Both centered mixed scheme and upwind-weighted mixed scheme are considered. The a posteriori error estimators, derived for the stress variable error plus scalar displacement error in $L^2$-norm, can be directly computed with the solutions of the mixed schemes without any additional cost, and are proven to be reliable. Local efficiency dependent on local variations in coefficients is obtained without any saturation assumption, and holds from the cases where convection or reaction is not present to convection- or reaction-dominated problems. The main tools of the analysis are the postprocessed approximation of scalar displacement, abstract error estimates, and the property of modified Oswald interpolation. Numerical experiments are carried out to support our theoretical results and to show the competitive behavior of the proposed posteriori error estimates.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1403-FE4}, url = {http://global-sci.org/intro/article_detail/jcm/9902.html} }A new technique of residual-type a posteriori error analysis is developed for the lowest-order Raviart-Thomas mixed finite element discretizations of convection-diffusion-reaction equations in two- or three-dimension. Both centered mixed scheme and upwind-weighted mixed scheme are considered. The a posteriori error estimators, derived for the stress variable error plus scalar displacement error in $L^2$-norm, can be directly computed with the solutions of the mixed schemes without any additional cost, and are proven to be reliable. Local efficiency dependent on local variations in coefficients is obtained without any saturation assumption, and holds from the cases where convection or reaction is not present to convection- or reaction-dominated problems. The main tools of the analysis are the postprocessed approximation of scalar displacement, abstract error estimates, and the property of modified Oswald interpolation. Numerical experiments are carried out to support our theoretical results and to show the competitive behavior of the proposed posteriori error estimates.