- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
Recently, Bai proposed a block-counter-diagonal and a block-counter-triangular preconditioning matrices to precondition the GMRES method for solving the structured system of linear equations arising from the Galerkin finite-element discretizations of the distributed control problems in (Computing 91 (2011) 379-395). He analyzed the spectral properties and derived explicit expressions of the eigenvalues and eigenvectors of the preconditioned matrices. By applying the special structures and properties of the eigenvector matrices of the preconditioned matrices, we derive upper bounds for the 2-norm condition numbers of the eigenvector matrices and give asymptotic convergence factors of the preconditioned GMRES methods with the block-counter-diagonal and the block-counter-triangular preconditioners. Experimental results show that the convergence analyses match well with the numerical results.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1401-CR4}, url = {http://global-sci.org/intro/article_detail/jcm/9885.html} }Recently, Bai proposed a block-counter-diagonal and a block-counter-triangular preconditioning matrices to precondition the GMRES method for solving the structured system of linear equations arising from the Galerkin finite-element discretizations of the distributed control problems in (Computing 91 (2011) 379-395). He analyzed the spectral properties and derived explicit expressions of the eigenvalues and eigenvectors of the preconditioned matrices. By applying the special structures and properties of the eigenvector matrices of the preconditioned matrices, we derive upper bounds for the 2-norm condition numbers of the eigenvector matrices and give asymptotic convergence factors of the preconditioned GMRES methods with the block-counter-diagonal and the block-counter-triangular preconditioners. Experimental results show that the convergence analyses match well with the numerical results.