- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
An adaptive numerical scheme is developed for the propagation of an interface in a velocity field based on the fast interface tracking method proposed in [2]. A multiresolution stategy to represent the interface instead of point values, allows local grid refinement while controlling the approximation error on the interface. For time integration, we use an explicit Runge-Kutta scheme of second-order with a multiscale time step, which takes longer time steps for finer spatial scales. The implementation of the algorithm uses a dynamic tree data structure to represent data in the computer memory. We briefly review first the main algorithm, describe the essential data structures, highlight the adaptive scheme, and illustrate the computational efficiency by some numerical examples.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1503-m4532}, url = {http://global-sci.org/intro/article_detail/jcm/9861.html} }An adaptive numerical scheme is developed for the propagation of an interface in a velocity field based on the fast interface tracking method proposed in [2]. A multiresolution stategy to represent the interface instead of point values, allows local grid refinement while controlling the approximation error on the interface. For time integration, we use an explicit Runge-Kutta scheme of second-order with a multiscale time step, which takes longer time steps for finer spatial scales. The implementation of the algorithm uses a dynamic tree data structure to represent data in the computer memory. We briefly review first the main algorithm, describe the essential data structures, highlight the adaptive scheme, and illustrate the computational efficiency by some numerical examples.