- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
This paper is concerned with the finite element method for the stochastic wave equation and the stochastic elastic equation driven by space-time white noise. For simplicity, we rewrite the two types of stochastic hyperbolic equations into a unified form. We convert the stochastic hyperbolic equation into a regularized equation by discretizing the white noise and then consider the full-discrete finite element method for the regularized equation. We derive the modeling error by using "Green's method" and the finite element approximation error by using the error estimates of the deterministic equation. Some numerical examples are presented to verify the theoretical results.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1506-m2014-0186}, url = {http://global-sci.org/intro/article_detail/jcm/9858.html} }This paper is concerned with the finite element method for the stochastic wave equation and the stochastic elastic equation driven by space-time white noise. For simplicity, we rewrite the two types of stochastic hyperbolic equations into a unified form. We convert the stochastic hyperbolic equation into a regularized equation by discretizing the white noise and then consider the full-discrete finite element method for the regularized equation. We derive the modeling error by using "Green's method" and the finite element approximation error by using the error estimates of the deterministic equation. Some numerical examples are presented to verify the theoretical results.