- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper, we propose a spectral DY-type projection method for nonlinear monotone systems of equations, which is a reasonable combination of DY conjugate gradient method, the spectral gradient method and the projection technique. Without the differentiability assumption on the system of equations, we establish the global convergence of the proposed method, which does not rely on any merit function. Furthermore, this method is derivative-free and so is very suitable to solve large-scale nonlinear monotone systems. The preliminary numerical results show the feasibility and effectiveness of the proposed method.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1412-m4494}, url = {http://global-sci.org/intro/article_detail/jcm/9847.html} }In this paper, we propose a spectral DY-type projection method for nonlinear monotone systems of equations, which is a reasonable combination of DY conjugate gradient method, the spectral gradient method and the projection technique. Without the differentiability assumption on the system of equations, we establish the global convergence of the proposed method, which does not rely on any merit function. Furthermore, this method is derivative-free and so is very suitable to solve large-scale nonlinear monotone systems. The preliminary numerical results show the feasibility and effectiveness of the proposed method.