- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
This paper develops a new method to analyze convergence of the iterated defect correction scheme of finite element methods on rectangular grids in both two and three dimensions. The main idea is to formulate energy inner products and energy (semi)norms into matrix forms. Then, two constants of two key inequalities involved are min and max eigenvalues of two associated generalized eigenvalue problems, respectively. Local versions on the element level of these two generalized eigenvalue problems are exactly solved to obtain sharp (lower) upper bounds of these two constants. This and some essential observations for iterated solutions establish convergence in 2D and the monotone decreasing property in 3D. For two dimensions the results herein improve those in literature; for three dimensions the results herein are new. Numerical results are presented to examine theoretical results.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1501-m4426}, url = {http://global-sci.org/intro/article_detail/jcm/9843.html} }This paper develops a new method to analyze convergence of the iterated defect correction scheme of finite element methods on rectangular grids in both two and three dimensions. The main idea is to formulate energy inner products and energy (semi)norms into matrix forms. Then, two constants of two key inequalities involved are min and max eigenvalues of two associated generalized eigenvalue problems, respectively. Local versions on the element level of these two generalized eigenvalue problems are exactly solved to obtain sharp (lower) upper bounds of these two constants. This and some essential observations for iterated solutions establish convergence in 2D and the monotone decreasing property in 3D. For two dimensions the results herein improve those in literature; for three dimensions the results herein are new. Numerical results are presented to examine theoretical results.