- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
For deblurring images corrupted by random valued noise, two-phase methods first select likely-to-be reliables (data that are not corrupted by random valued noise) and then deblur images only with selected data. Two-phase methods, however, often cause defective data artifacts, which are mixed results of missing data artifacts caused by the lack of data and noisy data artifacts caused mainly by falsely selected outliers (data that are corrupted by random valued noise). In this paper, to suppress these defective data artifacts, we propose a blurring model based reliable-selection technique to select reliables as many as possible to make all of to-be-recovered pixel values to contribute to selected data, while excluding outliers as accurately as possible. We also propose a normalization technique to compensate for non-uniform rates in recovering pixel values. We conducted simulation studies on Gaussian and diagonal deblurring to evaluate the performance of proposed techniques. Simulation results showed that proposed techniques improved the performance of two-phase methods, by suppressing defective data artifacts effectively.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1411-m4405}, url = {http://global-sci.org/intro/article_detail/jcm/9841.html} }For deblurring images corrupted by random valued noise, two-phase methods first select likely-to-be reliables (data that are not corrupted by random valued noise) and then deblur images only with selected data. Two-phase methods, however, often cause defective data artifacts, which are mixed results of missing data artifacts caused by the lack of data and noisy data artifacts caused mainly by falsely selected outliers (data that are corrupted by random valued noise). In this paper, to suppress these defective data artifacts, we propose a blurring model based reliable-selection technique to select reliables as many as possible to make all of to-be-recovered pixel values to contribute to selected data, while excluding outliers as accurately as possible. We also propose a normalization technique to compensate for non-uniform rates in recovering pixel values. We conducted simulation studies on Gaussian and diagonal deblurring to evaluate the performance of proposed techniques. Simulation results showed that proposed techniques improved the performance of two-phase methods, by suppressing defective data artifacts effectively.