- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
A singularly perturbed one-dimensional convection-diffusion problem is solved numerically by the finite element method based on higher order polynomials. Numerical solutions are obtained using S-type meshes with special emphasis on meshes which are graded (based on a mesh generating function) in the fine mesh region. Error estimates in the ε-weighted energy norm are proved. We derive an 'optimal' mesh generating function in order to minimize the constant in the error estimate. Two layer-adapted meshes defined by a recursive formulae in the fine mesh region are also considered and a new technique for proving error estimates for these meshes is presented. The aim of the paper is to emphasize the importance of using optimal meshes for higher order finite element methods. Numerical experiments support all theoretical results.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1405-m4362}, url = {http://global-sci.org/intro/article_detail/jcm/9824.html} }A singularly perturbed one-dimensional convection-diffusion problem is solved numerically by the finite element method based on higher order polynomials. Numerical solutions are obtained using S-type meshes with special emphasis on meshes which are graded (based on a mesh generating function) in the fine mesh region. Error estimates in the ε-weighted energy norm are proved. We derive an 'optimal' mesh generating function in order to minimize the constant in the error estimate. Two layer-adapted meshes defined by a recursive formulae in the fine mesh region are also considered and a new technique for proving error estimates for these meshes is presented. The aim of the paper is to emphasize the importance of using optimal meshes for higher order finite element methods. Numerical experiments support all theoretical results.