- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In the bioluminescence tomography (BLT) problem, one constructs quantitatively the bioluminescence source distribution inside a small animal from optical signals detected on the animal's body surface. The BLT problem is ill-posed and often the Tikhonov regularization is used to obtain stable approximate solutions. In conventional Tikhonov regularization, it is crucial to choose a proper regularization parameter to balance the accuracy and stability of approximate solutions. In this paper, a parameter-dependent coupled complex boundary method (CCBM) based Tikhonov regularization is applied to the BLT problem governed by the radiative transfer equation (RTE). By properly adjusting the parameter in the Robin boundary condition, we achieve one important property: the regularized solutions are uniformly stable with respect to the regularization parameter so that the regularization parameter can be chosen based solely on the consideration of the solution accuracy. The discrete-ordinate finite-element method is used to compute numerical solutions. Numerical results are provided to illustrate the performance of the proposed method.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1607-m2016-0515}, url = {http://global-sci.org/intro/article_detail/jcm/9818.html} }In the bioluminescence tomography (BLT) problem, one constructs quantitatively the bioluminescence source distribution inside a small animal from optical signals detected on the animal's body surface. The BLT problem is ill-posed and often the Tikhonov regularization is used to obtain stable approximate solutions. In conventional Tikhonov regularization, it is crucial to choose a proper regularization parameter to balance the accuracy and stability of approximate solutions. In this paper, a parameter-dependent coupled complex boundary method (CCBM) based Tikhonov regularization is applied to the BLT problem governed by the radiative transfer equation (RTE). By properly adjusting the parameter in the Robin boundary condition, we achieve one important property: the regularized solutions are uniformly stable with respect to the regularization parameter so that the regularization parameter can be chosen based solely on the consideration of the solution accuracy. The discrete-ordinate finite-element method is used to compute numerical solutions. Numerical results are provided to illustrate the performance of the proposed method.