- Journal Home
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
A Sixth Order Averaged Vector Field Method
- BibTex
- RIS
- TXT
@Article{JCM-34-479,
author = {Li , Haochen and Wang , Yushun and Qin , Mengzhao },
title = {A Sixth Order Averaged Vector Field Method},
journal = {Journal of Computational Mathematics},
year = {2016},
volume = {34},
number = {5},
pages = {479--498},
abstract = { In this paper, based on the theory of rooted trees and B-series, we propose the concrete formulas of the substitution law for the trees of order = 5. With the help of the new substitution law, we derive a B-series integrator extending the averaged vector field (AVF) methods for general Hamiltonian system to higher order. The new integrator turns out to be order of six and exactly preserves energy for Hamiltonian systems. Numerical experiments are presented to demonstrate the accuracy and the energy-preserving property of the sixth order AVF method.},
issn = {1991-7139},
doi = {https://doi.org/10.4208/jcm.1601-m2015-0265},
url = {http://global-sci.org/intro/article_detail/jcm/9808.html}
}
TY - JOUR
T1 - A Sixth Order Averaged Vector Field Method
AU - Li , Haochen
AU - Wang , Yushun
AU - Qin , Mengzhao
JO - Journal of Computational Mathematics
VL - 5
SP - 479
EP - 498
PY - 2016
DA - 2016/10
SN - 34
DO - http://doi.org/10.4208/jcm.1601-m2015-0265
UR - https://global-sci.org/intro/article_detail/jcm/9808.html
KW - Hamiltonian systems
KW - B-series
KW - Energy-preserving method
KW - Sixth order AVF method
KW - Substitution law
AB - In this paper, based on the theory of rooted trees and B-series, we propose the concrete formulas of the substitution law for the trees of order = 5. With the help of the new substitution law, we derive a B-series integrator extending the averaged vector field (AVF) methods for general Hamiltonian system to higher order. The new integrator turns out to be order of six and exactly preserves energy for Hamiltonian systems. Numerical experiments are presented to demonstrate the accuracy and the energy-preserving property of the sixth order AVF method.
Haochen Li , Yushun Wang & Mengzhao Qin . (2020). A Sixth Order Averaged Vector Field Method.
Journal of Computational Mathematics. 34 (5).
479-498.
doi:10.4208/jcm.1601-m2015-0265
Copy to clipboard