- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
We propose a retrospective trust region algorithm with the trust region converging to zero for the unconstrained optimization problem. Unlike traditional trust region algorithms, the algorithm updates the trust region radius according to the retrospective ratio, which uses the most recent model information. We show that the algorithm preserves the global convergence of traditional trust region algorithms. The superlinear convergence is also proved under some suitable conditions.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1601-m2015-0399}, url = {http://global-sci.org/intro/article_detail/jcm/9804.html} }We propose a retrospective trust region algorithm with the trust region converging to zero for the unconstrained optimization problem. Unlike traditional trust region algorithms, the algorithm updates the trust region radius according to the retrospective ratio, which uses the most recent model information. We show that the algorithm preserves the global convergence of traditional trust region algorithms. The superlinear convergence is also proved under some suitable conditions.