- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
J. Comp. Math., 35 (2017), pp. 363-380.
Published online: 2017-06
[An open-access article; the PDF is free to any online user.]
Cited by
- BibTex
- RIS
- TXT
In this work we address the numerical solution of large scale fluid-structure interaction problems when nonconforming grids and/or nonconforming finite elements discretizations are used at the interface separating the fluid and structure physical domains. To deal with nonconforming fluid-structure discretizations we use the INTERNODES method (INTER-polation for NOnconforming DEcompositionS) formerly introduced in [6] for the solution of elliptic PDEs on nonconforming domain decomposition. To cope with the high computational complexity of the three dimensional FSI problem obtained after spatial and temporal discretization, we use the block parallel preconditioner FaCSI [7]. A numerical investigation of the accuracy properties of INTERNODES applied to the nonconforming FSI problem is carried out for the simulation of the pressure wave propagation in a straight elastic cylinder. Finally, we study the scalability performance of the FaCSI preconditioner in the nonconforming case by solving a large-scale nonconforming FSI problem in a patient-specific arterial bypass.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1702-m2016-0630}, url = {http://global-sci.org/intro/article_detail/jcm/9777.html} }In this work we address the numerical solution of large scale fluid-structure interaction problems when nonconforming grids and/or nonconforming finite elements discretizations are used at the interface separating the fluid and structure physical domains. To deal with nonconforming fluid-structure discretizations we use the INTERNODES method (INTER-polation for NOnconforming DEcompositionS) formerly introduced in [6] for the solution of elliptic PDEs on nonconforming domain decomposition. To cope with the high computational complexity of the three dimensional FSI problem obtained after spatial and temporal discretization, we use the block parallel preconditioner FaCSI [7]. A numerical investigation of the accuracy properties of INTERNODES applied to the nonconforming FSI problem is carried out for the simulation of the pressure wave propagation in a straight elastic cylinder. Finally, we study the scalability performance of the FaCSI preconditioner in the nonconforming case by solving a large-scale nonconforming FSI problem in a patient-specific arterial bypass.