- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
The possibly most popular regularization method for solving the least squares problem $\mathop{\rm min}\limits_x$$||Ax-b||_2$ with a highly ill-conditioned or rank deficient coefficient matrix $A$ is the Tikhonov regularization method. In this paper we present the explicit expressions of the normwise, mixed and componentwise condition numbers for the Tikhonov regularization when $A$ has linear structures. The structured condition numbers in the special cases of nonlinear structure i.e. Vandermonde and Cauchy matrices are also considered. Some comparisons between structured condition numbers and unstructured condition numbers are made by numerical experiments. In addition, we also derive the normwise, mixed and componentwise condition numbers for the Tikhonov regularization when the coefficient matrix, regularization matrix and right-hand side vector are all perturbed, which generalize the results obtained by Chu et al. [Numer. Linear Algebra Appl., 18 (2011), 87-103].
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1608-m2015-0279}, url = {http://global-sci.org/intro/article_detail/jcm/9768.html} }The possibly most popular regularization method for solving the least squares problem $\mathop{\rm min}\limits_x$$||Ax-b||_2$ with a highly ill-conditioned or rank deficient coefficient matrix $A$ is the Tikhonov regularization method. In this paper we present the explicit expressions of the normwise, mixed and componentwise condition numbers for the Tikhonov regularization when $A$ has linear structures. The structured condition numbers in the special cases of nonlinear structure i.e. Vandermonde and Cauchy matrices are also considered. Some comparisons between structured condition numbers and unstructured condition numbers are made by numerical experiments. In addition, we also derive the normwise, mixed and componentwise condition numbers for the Tikhonov regularization when the coefficient matrix, regularization matrix and right-hand side vector are all perturbed, which generalize the results obtained by Chu et al. [Numer. Linear Algebra Appl., 18 (2011), 87-103].