- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
A cascadic multigrid method is proposed for eigenvalue problems based on the multilevel correction scheme. With this new scheme, an eigenvalue problem on the finest space can be solved by linear smoothing steps on a series of multilevel finite element spaces and nonlinear correcting steps on special coarsest spaces. Once the sequence of finite element spaces and the number of smoothing steps are appropriately chosen, the optimal convergence rate with the optimal computational work can be obtained. Some numerical experiments are presented to validate our theoretical analysis.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1608-m2014-0135}, url = {http://global-sci.org/intro/article_detail/jcm/9764.html} }A cascadic multigrid method is proposed for eigenvalue problems based on the multilevel correction scheme. With this new scheme, an eigenvalue problem on the finest space can be solved by linear smoothing steps on a series of multilevel finite element spaces and nonlinear correcting steps on special coarsest spaces. Once the sequence of finite element spaces and the number of smoothing steps are appropriately chosen, the optimal convergence rate with the optimal computational work can be obtained. Some numerical experiments are presented to validate our theoretical analysis.