- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
Based on the work of Shu [SIAM J. Sci. Stat. Comput, 9 (1988), pp.1073-1084], we construct a class of high order multi-step temporal discretization procedure for finite volume Hermite weighted essential non-oscillatory (HWENO) methods to solve hyperbolic conservation laws. The key feature of the multi-step temporal discretization procedure is to use variable time step with strong stability preserving (SSP). The multi-step temporal discretization methods can make full use of computed information with HWENO spatial discretization by holding the former computational values. Extensive numerical experiments are presented to demonstrate that the finite volume HWENO schemes with multi-step discretization can achieve high order accuracy and maintain non-oscillatory properties near discontinuous region of the solution.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1609-m2014-0069}, url = {http://global-sci.org/intro/article_detail/jcm/9763.html} }Based on the work of Shu [SIAM J. Sci. Stat. Comput, 9 (1988), pp.1073-1084], we construct a class of high order multi-step temporal discretization procedure for finite volume Hermite weighted essential non-oscillatory (HWENO) methods to solve hyperbolic conservation laws. The key feature of the multi-step temporal discretization procedure is to use variable time step with strong stability preserving (SSP). The multi-step temporal discretization methods can make full use of computed information with HWENO spatial discretization by holding the former computational values. Extensive numerical experiments are presented to demonstrate that the finite volume HWENO schemes with multi-step discretization can achieve high order accuracy and maintain non-oscillatory properties near discontinuous region of the solution.