- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this work, two-grid characteristic finite volume schemes for the nonlinear parabolic problem are considered. In our algorithms, the diffusion term is discretized by the finite volume method, while the temporal differentiation and advection terms are treated by the characteristic scheme. Under some conditions about the coefficients and exact solution, optimal error estimates for the numerical solution are obtained. Furthermore, the two-grid characteristic finite volume methods involve solving a nonlinear equation on coarse mesh with mesh size $H$, a large linear problem for the Oseen two-grid characteristic finite volume method on a fine mesh with mesh size $h = O(H^2)$ or a large linear problem for the Newton two-grid characteristic finite volume method on a fine mesh with mesh size $h = O(|log h|^{1/2}H^3)$. These methods we studied provide the same convergence rate as that of the characteristic finite volume method, which involves solving one large nonlinear problem on a fine mesh with mesh size $h$. Some numerical results are presented to demonstrate the efficiency of the proposed methods.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1304-m4288}, url = {http://global-sci.org/intro/article_detail/jcm/9748.html} }In this work, two-grid characteristic finite volume schemes for the nonlinear parabolic problem are considered. In our algorithms, the diffusion term is discretized by the finite volume method, while the temporal differentiation and advection terms are treated by the characteristic scheme. Under some conditions about the coefficients and exact solution, optimal error estimates for the numerical solution are obtained. Furthermore, the two-grid characteristic finite volume methods involve solving a nonlinear equation on coarse mesh with mesh size $H$, a large linear problem for the Oseen two-grid characteristic finite volume method on a fine mesh with mesh size $h = O(H^2)$ or a large linear problem for the Newton two-grid characteristic finite volume method on a fine mesh with mesh size $h = O(|log h|^{1/2}H^3)$. These methods we studied provide the same convergence rate as that of the characteristic finite volume method, which involves solving one large nonlinear problem on a fine mesh with mesh size $h$. Some numerical results are presented to demonstrate the efficiency of the proposed methods.