- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In scientific applications from plasma to chemical kinetics, a wide range of temporal scales can present in a system of differential equations. A major difficulty is encountered due to the stiffness of the system and it is required to develop fast numerical schemes that are able to access previously unattainable parameter regimes. In this work, we consider an initial-final value problem for a multi-scale singularly perturbed system of linear ordinary differential equations with discontinuous coefficients. We construct a tailored finite point method, which yields approximate solutions that converge in the maximum norm, uniformly with respect to the singular perturbation parameters, to the exact solution. A parameter-uniform error estimate in the maximum norm is also proved. The results of numerical experiments, that support the theoretical results, are reported.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1304-m4245}, url = {http://global-sci.org/intro/article_detail/jcm/9744.html} }In scientific applications from plasma to chemical kinetics, a wide range of temporal scales can present in a system of differential equations. A major difficulty is encountered due to the stiffness of the system and it is required to develop fast numerical schemes that are able to access previously unattainable parameter regimes. In this work, we consider an initial-final value problem for a multi-scale singularly perturbed system of linear ordinary differential equations with discontinuous coefficients. We construct a tailored finite point method, which yields approximate solutions that converge in the maximum norm, uniformly with respect to the singular perturbation parameters, to the exact solution. A parameter-uniform error estimate in the maximum norm is also proved. The results of numerical experiments, that support the theoretical results, are reported.