Volume 31, Issue 3
Efficient Box-Constrained TV-Type-l1 Algorithms for Restoring Images with Impulse Noise

Liyan Ma, Michael K. Ng, Jian Yu & Tieyong Zeng

J. Comp. Math., 31 (2013), pp. 249-270.

Published online: 2013-06

Preview Full PDF 47 1807
Export citation
  • Abstract

In this paper, we study the restoration of images simultaneously corrupted by blur and impulse noise via variational approach with a box constraint on the pixel values of an image. In the literature, the TV-l1 variational model which contains a total variation (TV) regularization term and an l1 data-fidelity term, has been proposed and developed. Several numerical methods have been studied and experimental results have shown that these methods lead to very promising results. However, these numerical methods are designed based on approximation or penalty approaches, and do not consider the box constraint. The addition of the box constraint makes the problem more difficult to handle. The main contribution of this paper is to develop numerical algorithms based on the derivation of exact total variation and the use of proximal operators. Both one-phase and two-phase methods are considered, and both TV and nonlocal TV versions are designed. The box constraint [0,1] on the pixel values of an image can be efficiently handled by the proposed algorithms. The numerical experiments demonstrate that the proposed methods are efficient in computational time and effective in restoring images with impulse noise.

  • Keywords

Image restoration Impulse noise Total variation Nonlocal total variation Proximal Operators

  • AMS Subject Headings

65J22 65K10 68U10.

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{JCM-31-249, author = {}, title = {Efficient Box-Constrained TV-Type-l1 Algorithms for Restoring Images with Impulse Noise}, journal = {Journal of Computational Mathematics}, year = {2013}, volume = {31}, number = {3}, pages = {249--270}, abstract = {

In this paper, we study the restoration of images simultaneously corrupted by blur and impulse noise via variational approach with a box constraint on the pixel values of an image. In the literature, the TV-l1 variational model which contains a total variation (TV) regularization term and an l1 data-fidelity term, has been proposed and developed. Several numerical methods have been studied and experimental results have shown that these methods lead to very promising results. However, these numerical methods are designed based on approximation or penalty approaches, and do not consider the box constraint. The addition of the box constraint makes the problem more difficult to handle. The main contribution of this paper is to develop numerical algorithms based on the derivation of exact total variation and the use of proximal operators. Both one-phase and two-phase methods are considered, and both TV and nonlocal TV versions are designed. The box constraint [0,1] on the pixel values of an image can be efficiently handled by the proposed algorithms. The numerical experiments demonstrate that the proposed methods are efficient in computational time and effective in restoring images with impulse noise.

}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1301-m4143}, url = {http://global-sci.org/intro/article_detail/jcm/9733.html} }
TY - JOUR T1 - Efficient Box-Constrained TV-Type-l1 Algorithms for Restoring Images with Impulse Noise JO - Journal of Computational Mathematics VL - 3 SP - 249 EP - 270 PY - 2013 DA - 2013/06 SN - 31 DO - http://doi.org/10.4208/jcm.1301-m4143 UR - https://global-sci.org/intro/article_detail/jcm/9733.html KW - Image restoration KW - Impulse noise KW - Total variation KW - Nonlocal total variation KW - Proximal Operators AB -

In this paper, we study the restoration of images simultaneously corrupted by blur and impulse noise via variational approach with a box constraint on the pixel values of an image. In the literature, the TV-l1 variational model which contains a total variation (TV) regularization term and an l1 data-fidelity term, has been proposed and developed. Several numerical methods have been studied and experimental results have shown that these methods lead to very promising results. However, these numerical methods are designed based on approximation or penalty approaches, and do not consider the box constraint. The addition of the box constraint makes the problem more difficult to handle. The main contribution of this paper is to develop numerical algorithms based on the derivation of exact total variation and the use of proximal operators. Both one-phase and two-phase methods are considered, and both TV and nonlocal TV versions are designed. The box constraint [0,1] on the pixel values of an image can be efficiently handled by the proposed algorithms. The numerical experiments demonstrate that the proposed methods are efficient in computational time and effective in restoring images with impulse noise.

Liyan Ma, Michael K. Ng, Jian Yu & Tieyong Zeng. (2020). Efficient Box-Constrained TV-Type-l1 Algorithms for Restoring Images with Impulse Noise. Journal of Computational Mathematics. 31 (3). 249-270. doi:10.4208/jcm.1301-m4143
Copy to clipboard
The citation has been copied to your clipboard