- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper, by combining the second order characteristics time discretization with the variational multiscale finite element method in space we get a second order modified characteristics variational multiscale finite element method for the time dependent Navier-Stokes problem. The theoretical analysis shows that the proposed method has a good convergence property. To show the efficiency of the proposed finite element method, we first present some numerical results for analytical solution problems. We then give some numerical results for the lid-driven cavity flow with $Re$=5000, 7500 and 10000. We present the numerical results as the time is sufficiently long, so that the steady state numerical solutions can be obtained.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1210-m3799}, url = {http://global-sci.org/intro/article_detail/jcm/9727.html} }In this paper, by combining the second order characteristics time discretization with the variational multiscale finite element method in space we get a second order modified characteristics variational multiscale finite element method for the time dependent Navier-Stokes problem. The theoretical analysis shows that the proposed method has a good convergence property. To show the efficiency of the proposed finite element method, we first present some numerical results for analytical solution problems. We then give some numerical results for the lid-driven cavity flow with $Re$=5000, 7500 and 10000. We present the numerical results as the time is sufficiently long, so that the steady state numerical solutions can be obtained.