- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
This paper presents sufficient conditions for optimality of the Linear programming (LP) problem in the neighborhood of an optimal solution, and applies them to an interior point method for solving the LP problem. We show that after a finite number of iterations, an exact solution to the LP problem is obtained by solving a linear system of equations under the assumptions that the primal and dual problems are both nondegenerate, and that the minimum value is bounded. If necessary, the dual solution can also be found.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9549.html} }This paper presents sufficient conditions for optimality of the Linear programming (LP) problem in the neighborhood of an optimal solution, and applies them to an interior point method for solving the LP problem. We show that after a finite number of iterations, an exact solution to the LP problem is obtained by solving a linear system of equations under the assumptions that the primal and dual problems are both nondegenerate, and that the minimum value is bounded. If necessary, the dual solution can also be found.