- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
This paper gives a thorough analysis of the local refinement method on plane polygonal domains with special attention to the treatment of reentrant corner. Convergence rates of the finite element method under various norms are derived via a systematic treatment of the interpolation theory in weighted Sobolev spaces. It is proved that by refining the mesh suitably, the finite element approximations for problems with singularities achieve the same convergence rates as those for smooth solutions.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9534.html} }This paper gives a thorough analysis of the local refinement method on plane polygonal domains with special attention to the treatment of reentrant corner. Convergence rates of the finite element method under various norms are derived via a systematic treatment of the interpolation theory in weighted Sobolev spaces. It is proved that by refining the mesh suitably, the finite element approximations for problems with singularities achieve the same convergence rates as those for smooth solutions.