- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
The Chebyshev polynomials have good approximation properties which are not affected by boundary values. They have higher resolution near the boundary than in the interior and are suitable for problems in which the solution changes rapidly near the boundary. Also, they can be calculated by FFT. Thus they are used mostly for initial-boundary value problems for P.D.E.'s (see [1, 3-4, 6, 8-11]). Maday and Quarterom discussed the convergence of Legendre and Chebyshev spectral approximations to the steady Burgers equation. In this paper we consider Burgers-like equations. $$\begin{cases} ∂_iu+F(u)_x-vu_{zx}=0, & -1≤x≤1, 0<t≤T \\ u (-1,t) =u (1,t) =0, & 0≤t≤T & (0.1) \\ u (x,0) =u_0(x), & -1≤x≤1 \end{cases}$$ where $F\in C(R)$ and there exists a positive function $A\in C(R)$ and a constant $p>1$ such that $$|F(z+y)-F(z)|\leq A(z)(|y|+|y|^p).$$ We develop a Chebyshev spectral scheme and a pseudospectral scheme for solving (0.1) and establish their generalized stability and convergence.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9497.html} }The Chebyshev polynomials have good approximation properties which are not affected by boundary values. They have higher resolution near the boundary than in the interior and are suitable for problems in which the solution changes rapidly near the boundary. Also, they can be calculated by FFT. Thus they are used mostly for initial-boundary value problems for P.D.E.'s (see [1, 3-4, 6, 8-11]). Maday and Quarterom discussed the convergence of Legendre and Chebyshev spectral approximations to the steady Burgers equation. In this paper we consider Burgers-like equations. $$\begin{cases} ∂_iu+F(u)_x-vu_{zx}=0, & -1≤x≤1, 0<t≤T \\ u (-1,t) =u (1,t) =0, & 0≤t≤T & (0.1) \\ u (x,0) =u_0(x), & -1≤x≤1 \end{cases}$$ where $F\in C(R)$ and there exists a positive function $A\in C(R)$ and a constant $p>1$ such that $$|F(z+y)-F(z)|\leq A(z)(|y|+|y|^p).$$ We develop a Chebyshev spectral scheme and a pseudospectral scheme for solving (0.1) and establish their generalized stability and convergence.