- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
The solution of certain Toeplitz linear systems is considered in this paper. This kind of systems are encountered when we solve certain partial differential equations by finite difference techniques and approximate functions using higher order splines. The methods presented here are more efficient than the Cholesky decomposition method and are based on the circulant factorization of the symmetric "banded circulant" matrix, the Woodbury formula and the algebraic perturbation method.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9483.html} }The solution of certain Toeplitz linear systems is considered in this paper. This kind of systems are encountered when we solve certain partial differential equations by finite difference techniques and approximate functions using higher order splines. The methods presented here are more efficient than the Cholesky decomposition method and are based on the circulant factorization of the symmetric "banded circulant" matrix, the Woodbury formula and the algebraic perturbation method.