- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
This paper presents a detailed derivation and description of a new method for solving equality constrained optimization problem. The new method is based upon the quadratic penalty function, but uses orthogonal transformations, derived from the Jacobian matrix of the constraints, to deal with the numerical ill-conditioning that affects the methods of this type.
At each iteration of the new algorithm, the orthogonal search direction is determined by a quasi-Newton method which can avoid the necessity of solving a set of equations and the step-length is chosen by a Armijo line search. The matrix which approaches the inverse of the projected Hessian of composite function is updated by means of the BFGS formula from iteration to iteration. As the penalty parameter approaches zero, the projected inverse Hessian has special structure which can guarantee us to obtain the search direction accurately even if the Hessian of composite function is ill-conditioned in the former penalty function methods.
This paper presents a detailed derivation and description of a new method for solving equality constrained optimization problem. The new method is based upon the quadratic penalty function, but uses orthogonal transformations, derived from the Jacobian matrix of the constraints, to deal with the numerical ill-conditioning that affects the methods of this type.
At each iteration of the new algorithm, the orthogonal search direction is determined by a quasi-Newton method which can avoid the necessity of solving a set of equations and the step-length is chosen by a Armijo line search. The matrix which approaches the inverse of the projected Hessian of composite function is updated by means of the BFGS formula from iteration to iteration. As the penalty parameter approaches zero, the projected inverse Hessian has special structure which can guarantee us to obtain the search direction accurately even if the Hessian of composite function is ill-conditioned in the former penalty function methods.