- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Unconstrained Optimization Methods for Nonlinear Complementarity Problem
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JCM-13-259,
author = {J. M. Peng},
title = {Unconstrained Optimization Methods for Nonlinear Complementarity Problem},
journal = {Journal of Computational Mathematics},
year = {1995},
volume = {13},
number = {3},
pages = {259--266},
abstract = {
In this paper, we propose a class of new NCP functions and discuss their properties. By these function, we transfer the complementarity problem into unconstrained optimization problem and study the corresponding optimization problem. Numerical results are given.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9268.html} }
TY - JOUR
T1 - Unconstrained Optimization Methods for Nonlinear Complementarity Problem
AU - J. M. Peng
JO - Journal of Computational Mathematics
VL - 3
SP - 259
EP - 266
PY - 1995
DA - 1995/06
SN - 13
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/9268.html
KW -
AB -
In this paper, we propose a class of new NCP functions and discuss their properties. By these function, we transfer the complementarity problem into unconstrained optimization problem and study the corresponding optimization problem. Numerical results are given.
J. M. Peng. (1995). Unconstrained Optimization Methods for Nonlinear Complementarity Problem.
Journal of Computational Mathematics. 13 (3).
259-266.
doi:
Copy to clipboard