- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
The boundary value problem for the nonlinear parabolic system is solved by the finite difference method with nonuniform meshes. The existence and a priori estimates of the discrete vector solutions for the general difference schemes with unequal meshsteps are established by the fixed point technique. The absolute and relative convergence of the discrete vector solution are justified by a series of a priori estimates. The analysis of mentioned problems is based on the assumption of heuristic character concerning the existence of the unique smooth solution for the original problem of the nonlinear parabolic system.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9242.html} }The boundary value problem for the nonlinear parabolic system is solved by the finite difference method with nonuniform meshes. The existence and a priori estimates of the discrete vector solutions for the general difference schemes with unequal meshsteps are established by the fixed point technique. The absolute and relative convergence of the discrete vector solution are justified by a series of a priori estimates. The analysis of mentioned problems is based on the assumption of heuristic character concerning the existence of the unique smooth solution for the original problem of the nonlinear parabolic system.