- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
A new method for unconstrained optimization problems is presented. It belongs to the class of trust region method, in which the descent direction is sought by using the trust region steps within the restricted subspace. Because this subspace can be specified to include information about previous steps, the method is also related to a supermemory descent method without performing multiple dimensional searches. Trust region methods have attractive global convergence property. Supermemory information has good scale independence property. Since the method possesses the characteristics of both the trust region methods and the supermemory descent methods, it is endowed with rapid convergence. Numerical tests illustrate this point.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9230.html} }A new method for unconstrained optimization problems is presented. It belongs to the class of trust region method, in which the descent direction is sought by using the trust region steps within the restricted subspace. Because this subspace can be specified to include information about previous steps, the method is also related to a supermemory descent method without performing multiple dimensional searches. Trust region methods have attractive global convergence property. Supermemory information has good scale independence property. Since the method possesses the characteristics of both the trust region methods and the supermemory descent methods, it is endowed with rapid convergence. Numerical tests illustrate this point.