- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
We will study the convergence property of Schwarz alternating method for concave region where the concave region is decomposed into convex subdomains. Optimality of regular preconditioner deduced from Schwarz alternating is also proved. It is shown that the convergent rate and the condition number are independent of the mesh size but dependent on the relative geometric position of subdomains. Special care is devoted to non-uniform meshes, exclusively, local properties like the shape regularity of the finite elements are utilized.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9205.html} }We will study the convergence property of Schwarz alternating method for concave region where the concave region is decomposed into convex subdomains. Optimality of regular preconditioner deduced from Schwarz alternating is also proved. It is shown that the convergent rate and the condition number are independent of the mesh size but dependent on the relative geometric position of subdomains. Special care is devoted to non-uniform meshes, exclusively, local properties like the shape regularity of the finite elements are utilized.