- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
A Quasi-Newton method in Infinite-dimensional Spaces (QNIS) for solving operator equations is presented and the convergence of a sequence generated by QNIS is also proved in the paper. Next, we suggest a finite-dimensional implementation of QNIS and prove that the sequence defined by the finite-dimensional algorithm converges to the root of the original operator equation providing that the later exists and that the Fréchet derivative of the governing operator is invertible. Finally, we apply QNIS to an inverse problem for a parabolic differential equation to illustrate the efficiency of the finite-dimensional algorithm.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9161.html} }A Quasi-Newton method in Infinite-dimensional Spaces (QNIS) for solving operator equations is presented and the convergence of a sequence generated by QNIS is also proved in the paper. Next, we suggest a finite-dimensional implementation of QNIS and prove that the sequence defined by the finite-dimensional algorithm converges to the root of the original operator equation providing that the later exists and that the Fréchet derivative of the governing operator is invertible. Finally, we apply QNIS to an inverse problem for a parabolic differential equation to illustrate the efficiency of the finite-dimensional algorithm.