- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
$A = (a_{ij}) \in R^{n×n}$ is termed bisymmetric matrix if $$a_{ij} = a_{ji} = a_{n-j+1,n-i+1}, i,j=1,2, ..., n.$$ We denote the set of all $n \times n$ bisymmetric matrices by $BSR^{n×n}$.
This paper is mainly concerned with solving the following two problems:
Problem I. Given $X, B \in R^{n×m}$, find $A \in P_n$ such that $AX=B$, where $P_n = \{ A \in BSR^{n×n}| x^TAx \ge 0, \forall x \in R^n \}$.
Problem Ⅱ. Given $A^* \in R^{n×n}$, find $\hat{A} \in S_E$ such that $$\| A^* -\hat{A}\|_F =\mathop{min}\limits_{A \in S_E} \| A^* - A \|_F,$$ where $\|\cdot\|_F$ is Frobenius norm, and $S_E$ denotes the solution set of problem I.
The necessary and sufficient conditions for the solvability of problem I have been studied. The general form of $S_E$ has been given. For problem II the expression of the solution has been provided.
$A = (a_{ij}) \in R^{n×n}$ is termed bisymmetric matrix if $$a_{ij} = a_{ji} = a_{n-j+1,n-i+1}, i,j=1,2, ..., n.$$ We denote the set of all $n \times n$ bisymmetric matrices by $BSR^{n×n}$.
This paper is mainly concerned with solving the following two problems:
Problem I. Given $X, B \in R^{n×m}$, find $A \in P_n$ such that $AX=B$, where $P_n = \{ A \in BSR^{n×n}| x^TAx \ge 0, \forall x \in R^n \}$.
Problem Ⅱ. Given $A^* \in R^{n×n}$, find $\hat{A} \in S_E$ such that $$\| A^* -\hat{A}\|_F =\mathop{min}\limits_{A \in S_E} \| A^* - A \|_F,$$ where $\|\cdot\|_F$ is Frobenius norm, and $S_E$ denotes the solution set of problem I.
The necessary and sufficient conditions for the solvability of problem I have been studied. The general form of $S_E$ has been given. For problem II the expression of the solution has been provided.