- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
The generalized least squares (LS) problem $$\min_{x\in R^n} (Ax-b)^T W^{-1} (Ax-b)$$ appears in many application areas. Here $W$ is an $m \times m$ symmetric positive definite matrix and $A$ is an $m \times n$ matrix with $m ≥ n$. Since the problem has many solutions in rank deficient case, some special preconditioned techniques are adapted to obtain the minimum 2-norm solution. A block SOR method and the preconditioned conjugate gradient (PCG) method are proposed here. Convergence and optimal relaxation parameter for the block SOR method are studied. An error bound for the PCG method is given. The comparison of these methods is investigated. Some remarks on the implementation of the methods and the operation cost are given as well.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9056.html} }The generalized least squares (LS) problem $$\min_{x\in R^n} (Ax-b)^T W^{-1} (Ax-b)$$ appears in many application areas. Here $W$ is an $m \times m$ symmetric positive definite matrix and $A$ is an $m \times n$ matrix with $m ≥ n$. Since the problem has many solutions in rank deficient case, some special preconditioned techniques are adapted to obtain the minimum 2-norm solution. A block SOR method and the preconditioned conjugate gradient (PCG) method are proposed here. Convergence and optimal relaxation parameter for the block SOR method are studied. An error bound for the PCG method is given. The comparison of these methods is investigated. Some remarks on the implementation of the methods and the operation cost are given as well.