- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
Problem of regularization of a singular system by derivative and proportional output feedback is studied. Necessary and sufficient conditions are obtained under which a singular system can be regularized into a closed-loop system that is regular and of index at most one. The reduced form is given that can easily explore the system properties as well as the feedback to be determined. The main results of the present paper are based on orthogonal transformations. Therefore, they can be implemented by numerically stable ways.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9021.html} }Problem of regularization of a singular system by derivative and proportional output feedback is studied. Necessary and sufficient conditions are obtained under which a singular system can be regularized into a closed-loop system that is regular and of index at most one. The reduced form is given that can easily explore the system properties as well as the feedback to be determined. The main results of the present paper are based on orthogonal transformations. Therefore, they can be implemented by numerically stable ways.