- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
A parallel chaotic multisplitting method for solving the large sparse linear complementarity problem is presented, and its convergence properties are discussed in detail when the system matrix is either symmetric or nonsymmetric. Moreover, some applicable relaxed variants of this parallel chaotic multisplitting method together with their convergence properties are investigated. Numerical results show that high parallel efficiency can be achieved by these new parallel chaotic multisplitting methods.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8980.html} }A parallel chaotic multisplitting method for solving the large sparse linear complementarity problem is presented, and its convergence properties are discussed in detail when the system matrix is either symmetric or nonsymmetric. Moreover, some applicable relaxed variants of this parallel chaotic multisplitting method together with their convergence properties are investigated. Numerical results show that high parallel efficiency can be achieved by these new parallel chaotic multisplitting methods.