- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper, motivated by the Martinez and Qi methods [1], we propose one type of globally convergent inexact generalized Newton methods to solve unconstrained optimization problems in which the objective functions are not twice differentiable, but have LC gradient. They make the norm of the gradient decreasing. These methods are implementable and globally convergent. We prove that the algorithms have superlinear convergence rates under some mild conditions.
The methods may also be used to solve nonsmooth equations.
In this paper, motivated by the Martinez and Qi methods [1], we propose one type of globally convergent inexact generalized Newton methods to solve unconstrained optimization problems in which the objective functions are not twice differentiable, but have LC gradient. They make the norm of the gradient decreasing. These methods are implementable and globally convergent. We prove that the algorithms have superlinear convergence rates under some mild conditions.
The methods may also be used to solve nonsmooth equations.