- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Expansion of Step-Transition Operator of Multi-Step Method and Its Applications (I)
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JCM-20-185,
author = {Tang , Yi-Fa},
title = {Expansion of Step-Transition Operator of Multi-Step Method and Its Applications (I)},
journal = {Journal of Computational Mathematics},
year = {2002},
volume = {20},
number = {2},
pages = {185--196},
abstract = { We expand the step-transition operator of any linear multi-step method with order $s \ge 2 \ {\rm up} \ {\rm to} \ O({\tau^{s+5}})$. And through examples we show how much the perturbation of the step-transition operator caused by the error of initial value is. },
issn = {1991-7139},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jcm/8909.html}
}
TY - JOUR
T1 - Expansion of Step-Transition Operator of Multi-Step Method and Its Applications (I)
AU - Tang , Yi-Fa
JO - Journal of Computational Mathematics
VL - 2
SP - 185
EP - 196
PY - 2002
DA - 2002/04
SN - 20
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/8909.html
KW - Multi-step method, Step-transition operator, Expansion.
AB - We expand the step-transition operator of any linear multi-step method with order $s \ge 2 \ {\rm up} \ {\rm to} \ O({\tau^{s+5}})$. And through examples we show how much the perturbation of the step-transition operator caused by the error of initial value is.
Tang , Yi-Fa. (2002). Expansion of Step-Transition Operator of Multi-Step Method and Its Applications (I).
Journal of Computational Mathematics. 20 (2).
185-196.
doi:
Copy to clipboard