- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
Let $T_{1,n}$ be an $n\times n$ unreduced symmetric tridiagonal matrix with eigenvalues $$\lambda_1<\lambda_2<\cdots<\lambda_n.$$ and $$W_k=\Bigg(\begin{matrix}T_{1,k-1} & 0 \\0&T_{k+1,n}\end{matrix} \Bigg)$$is an $(n-1)\times(n-1)$ submatrix by deleting the $k^{th}$ row and $k^{th}$ column, $k=1,2,\ldots,n$ from $T_n$. Let $$\mu_1\leq\mu_2\leq\cdots\leq\mu_{k-1}$$ be the eigenvalues of $T_{1,k-1}$ and $$\mu_k\leq\mu_{k+1}\leq\cdots\leq\mu_{n-1}$$ be the eigenvalues of $T_{k+1,n}$.
A new inverse eigenvalues problem has put forward as follows: How do we construct an unreduced symmetric tridiagonal matrix $T_{1,n}$, if we only know the spectral data: the eigenvalues of $T_{1,n}$, the eigenvalues of $T_{1,k-1}$ and the eigenvalues of $T_{k+1,n}$?
Namely if we only know the data: $\lambda_1,\lambda_2,\cdots,\lambda_n,\mu_1,\mu_2,\cdots,\mu_{k-1}$ and $\mu_k,\mu_{k+1},\cdots,\mu_{n-1}$ how do we find the matrix $T_{1,n}$? A necessary and sufficient condition and an algorithm of solving such problem, are given in this paper.
Let $T_{1,n}$ be an $n\times n$ unreduced symmetric tridiagonal matrix with eigenvalues $$\lambda_1<\lambda_2<\cdots<\lambda_n.$$ and $$W_k=\Bigg(\begin{matrix}T_{1,k-1} & 0 \\0&T_{k+1,n}\end{matrix} \Bigg)$$is an $(n-1)\times(n-1)$ submatrix by deleting the $k^{th}$ row and $k^{th}$ column, $k=1,2,\ldots,n$ from $T_n$. Let $$\mu_1\leq\mu_2\leq\cdots\leq\mu_{k-1}$$ be the eigenvalues of $T_{1,k-1}$ and $$\mu_k\leq\mu_{k+1}\leq\cdots\leq\mu_{n-1}$$ be the eigenvalues of $T_{k+1,n}$.
A new inverse eigenvalues problem has put forward as follows: How do we construct an unreduced symmetric tridiagonal matrix $T_{1,n}$, if we only know the spectral data: the eigenvalues of $T_{1,n}$, the eigenvalues of $T_{1,k-1}$ and the eigenvalues of $T_{k+1,n}$?
Namely if we only know the data: $\lambda_1,\lambda_2,\cdots,\lambda_n,\mu_1,\mu_2,\cdots,\mu_{k-1}$ and $\mu_k,\mu_{k+1},\cdots,\mu_{n-1}$ how do we find the matrix $T_{1,n}$? A necessary and sufficient condition and an algorithm of solving such problem, are given in this paper.