- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In [12], a QP free feasible method was proposed for the minimization of a smooth function subject to smooth inequality constraints. This method is based on the solutions of linear systems of equations, the reformulation of the KKT optimality conditions by using the Fischer-Burmeister NCP function. This method ensures the feasibility of all iterations. In this paper, we modify the method in [12] slightly to obtain the local convergence under some weaker conditions. In particular, this method is implementable and globally convergent without assuming the linear independence of the gradients of active constrained functions and the uniformly positive definiteness of the submatrix obtained by the Newton or Quasi Newton methods. We also prove that the method has superlinear convergence rate under some mild conditions. Some preliminary numerical results indicate that this new QP free feasible method is quite promising.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8864.html} }In [12], a QP free feasible method was proposed for the minimization of a smooth function subject to smooth inequality constraints. This method is based on the solutions of linear systems of equations, the reformulation of the KKT optimality conditions by using the Fischer-Burmeister NCP function. This method ensures the feasibility of all iterations. In this paper, we modify the method in [12] slightly to obtain the local convergence under some weaker conditions. In particular, this method is implementable and globally convergent without assuming the linear independence of the gradients of active constrained functions and the uniformly positive definiteness of the submatrix obtained by the Newton or Quasi Newton methods. We also prove that the method has superlinear convergence rate under some mild conditions. Some preliminary numerical results indicate that this new QP free feasible method is quite promising.