- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper, the linear finite element approximation to the positive and symmetric, linear hyperbolic systems is analyzed and an $O(h^2)$ order error estimate is established under the conditions of strongly regular triangulation and the $H^3$-regularity for the exact solutions. The convergence analysis is based on some superclose estimates derived in this paper. Our method and result here are also applicable to general hyperbolic problems. Finally, we discuss the linearized shallow water system of equations.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8815.html} }In this paper, the linear finite element approximation to the positive and symmetric, linear hyperbolic systems is analyzed and an $O(h^2)$ order error estimate is established under the conditions of strongly regular triangulation and the $H^3$-regularity for the exact solutions. The convergence analysis is based on some superclose estimates derived in this paper. Our method and result here are also applicable to general hyperbolic problems. Finally, we discuss the linearized shallow water system of equations.