- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
A revised conjugate gradient projection method for nonlinear inequality constrained optimization problems is proposed in the paper, since the search direction is the combination of the conjugate projection gradient and the quasi-Newton direction. It has two merits. The one is that the amount of computation is lower because the gradient matrix only needs to be computed one time at each iteration. The other is that the algorithm is of global convergence and locally superlinear convergence without strict complementary condition under some mild assumptions. In addition, the search direction is explicit.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8810.html} }A revised conjugate gradient projection method for nonlinear inequality constrained optimization problems is proposed in the paper, since the search direction is the combination of the conjugate projection gradient and the quasi-Newton direction. It has two merits. The one is that the amount of computation is lower because the gradient matrix only needs to be computed one time at each iteration. The other is that the algorithm is of global convergence and locally superlinear convergence without strict complementary condition under some mild assumptions. In addition, the search direction is explicit.