- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper, finite volume method on unstructured meshes is studied for a parabolic convection-diffusion problem on an open bounded set of $R^d$ ($d = 2$ or $3$) with Robin boundary condition. Upwinding approximations are adapted to treat both the convection term and Robin boundary condition. By directly getting start from the formulation of the finite volume scheme, numerical analysis is done. By using several discrete functional analysis techniques such as summation by parts, discrete norm inequality, et al, the stability and error estimates on the approximate solution are established, existence and uniqueness of the approximate solution and the 1st order temporal norm and $L^2$ and $H^1$ spacial norm convergence properties are obtained.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8804.html} }In this paper, finite volume method on unstructured meshes is studied for a parabolic convection-diffusion problem on an open bounded set of $R^d$ ($d = 2$ or $3$) with Robin boundary condition. Upwinding approximations are adapted to treat both the convection term and Robin boundary condition. By directly getting start from the formulation of the finite volume scheme, numerical analysis is done. By using several discrete functional analysis techniques such as summation by parts, discrete norm inequality, et al, the stability and error estimates on the approximate solution are established, existence and uniqueness of the approximate solution and the 1st order temporal norm and $L^2$ and $H^1$ spacial norm convergence properties are obtained.