- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper we propose the well-known Fourier method on some non-tensor product domains in $\textrm{R}^d$, including simplex and so-called super-simplex which consists of $(d+1)!$ simplices. As two examples, in $2$-D and $3$-D case a super-simplex is shown as a parallel hexagon and a parallel quadrilateral dodecahedron, respectively. We have extended most of concepts and results of the traditional Fourier methods on multivariate cases, such as Fourier basis system, Fourier series, discrete Fourier transform (DFT) and its fast algorithm (FFT) on the super-simplex, as well as generalized sine and cosine transforms (DST, DCT) and related fast algorithms over a simplex. The relationship between the basic orthogonal system and eigen-functions of a Laplacian-like operator over these domains is explored.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8754.html} }In this paper we propose the well-known Fourier method on some non-tensor product domains in $\textrm{R}^d$, including simplex and so-called super-simplex which consists of $(d+1)!$ simplices. As two examples, in $2$-D and $3$-D case a super-simplex is shown as a parallel hexagon and a parallel quadrilateral dodecahedron, respectively. We have extended most of concepts and results of the traditional Fourier methods on multivariate cases, such as Fourier basis system, Fourier series, discrete Fourier transform (DFT) and its fast algorithm (FFT) on the super-simplex, as well as generalized sine and cosine transforms (DST, DCT) and related fast algorithms over a simplex. The relationship between the basic orthogonal system and eigen-functions of a Laplacian-like operator over these domains is explored.