- Journal Home
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Convergence Analysis of Morley Element on Anisotropic Meshes
- BibTex
- RIS
- TXT
@Article{JCM-24-169,
author = {},
title = {Convergence Analysis of Morley Element on Anisotropic Meshes},
journal = {Journal of Computational Mathematics},
year = {2006},
volume = {24},
number = {2},
pages = {169--180},
abstract = { The main aim of this paper is to study the convergence of a nonconforming triangular plate element-Morley element under anisotropic meshes. By a novel approach, an explicit bound for the interpolation error is derived for arbitrary triangular meshes (which even need not satisfy the maximal angle condition and the coordinate system condition ), the optimal consistency error is obtained for a family of anisotropically graded finite element meshes. },
issn = {1991-7139},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jcm/8743.html}
}
TY - JOUR
T1 - Convergence Analysis of Morley Element on Anisotropic Meshes
JO - Journal of Computational Mathematics
VL - 2
SP - 169
EP - 180
PY - 2006
DA - 2006/04
SN - 24
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/8743.html
KW - Anisotropic meshes
KW - Interpolation error
KW - Consistency error
KW - Morley element
AB - The main aim of this paper is to study the convergence of a nonconforming triangular plate element-Morley element under anisotropic meshes. By a novel approach, an explicit bound for the interpolation error is derived for arbitrary triangular meshes (which even need not satisfy the maximal angle condition and the coordinate system condition ), the optimal consistency error is obtained for a family of anisotropically graded finite element meshes.
Shi-Peng Mao & Shao-Chun Chen. (1970). Convergence Analysis of Morley Element on Anisotropic Meshes.
Journal of Computational Mathematics. 24 (2).
169-180.
doi:
Copy to clipboard