- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
The steepest descent method is the simplest gradient method for optimization. It is well known that exact line searches along each steepest descent direction may converge very slowly. An important result was given by Barzilar and Borwein, which is proved to be superlinearly convergent for convex quadratic in two dimensional space, and performs quite well for high dimensional problems. The BB method is not monotone, thus it is not easy to be generalized for general nonlinear functions unless certain non-monotone techniques being applied. Therefore, it is very desirable to find stepsize formulae which enable fast convergence and possess the monotone property. Such a stepsize $\alpha_k$ for the steepest descent method is suggested in this paper. An algorithm with this new stepsize in even iterations and exact line search in odd iterations is proposed. Numerical results are presented, which confirm that the new method can find the exact solution within 3 iteration for two dimensional problems. The new method is very efficient for small scale problems. A modified version of the new method is also presented, where the new technique for selecting the stepsize is used after every two exact line searches. The modified algorithm is comparable to the Barzilar-Borwein method for large scale problems and better for small scale problems.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8741.html} }The steepest descent method is the simplest gradient method for optimization. It is well known that exact line searches along each steepest descent direction may converge very slowly. An important result was given by Barzilar and Borwein, which is proved to be superlinearly convergent for convex quadratic in two dimensional space, and performs quite well for high dimensional problems. The BB method is not monotone, thus it is not easy to be generalized for general nonlinear functions unless certain non-monotone techniques being applied. Therefore, it is very desirable to find stepsize formulae which enable fast convergence and possess the monotone property. Such a stepsize $\alpha_k$ for the steepest descent method is suggested in this paper. An algorithm with this new stepsize in even iterations and exact line search in odd iterations is proposed. Numerical results are presented, which confirm that the new method can find the exact solution within 3 iteration for two dimensional problems. The new method is very efficient for small scale problems. A modified version of the new method is also presented, where the new technique for selecting the stepsize is used after every two exact line searches. The modified algorithm is comparable to the Barzilar-Borwein method for large scale problems and better for small scale problems.