- Journal Home
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Modified Morley Element Method for a Fourth Order Elliptic Singular Perturbation Problem
- BibTex
- RIS
- TXT
@Article{JCM-24-113,
author = {},
title = {Modified Morley Element Method for a Fourth Order Elliptic Singular Perturbation Problem},
journal = {Journal of Computational Mathematics},
year = {2006},
volume = {24},
number = {2},
pages = {113--120},
abstract = { This paper proposes a modified Morley element method for a fourth order elliptic singular perturbation problem. The method also uses Morley element or rectangle Morley element, but linear or bilinear approximation of finite element functions is used in the lower part of the bilinear form. It is shown that the modified method converges uniformly in the perturbation parameter. },
issn = {1991-7139},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jcm/8738.html}
}
TY - JOUR
T1 - Modified Morley Element Method for a Fourth Order Elliptic Singular Perturbation Problem
JO - Journal of Computational Mathematics
VL - 2
SP - 113
EP - 120
PY - 2006
DA - 2006/04
SN - 24
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/8738.html
KW - Morley element
KW - Singular perturbation problem
AB - This paper proposes a modified Morley element method for a fourth order elliptic singular perturbation problem. The method also uses Morley element or rectangle Morley element, but linear or bilinear approximation of finite element functions is used in the lower part of the bilinear form. It is shown that the modified method converges uniformly in the perturbation parameter.
Ming Wang, Jin-Chao Xu & Yu-Cheng Hu . (1970). Modified Morley Element Method for a Fourth Order Elliptic Singular Perturbation Problem.
Journal of Computational Mathematics. 24 (2).
113-120.
doi:
Copy to clipboard