- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
Consider the diffraction of a time-harmonic wave incident upon a periodic chiral structure. The diffraction problem may be simplified to a two-dimensional one. In this paper, the diffraction problem is solved by a finite element method with perfectly matched absorbing layers (PMLs). We use the PML technique to truncate the unbounded domain to a bounded one which attenuates the outgoing waves in the PML region. Our computational experiments indicate that the proposed method is efficient, which is capable of dealing with complicated chiral grating structures.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8704.html} }Consider the diffraction of a time-harmonic wave incident upon a periodic chiral structure. The diffraction problem may be simplified to a two-dimensional one. In this paper, the diffraction problem is solved by a finite element method with perfectly matched absorbing layers (PMLs). We use the PML technique to truncate the unbounded domain to a bounded one which attenuates the outgoing waves in the PML region. Our computational experiments indicate that the proposed method is efficient, which is capable of dealing with complicated chiral grating structures.